Porting MPI Applications to IBM SP

San Diego Supercomputing Center

Porting MPI Applications to IBM SP - Outline

- SP Architecture
 - CPU
 - Network
- Application data models compared to the T3e
- MPI issues
- Compilers
- Numerical and System Libraries
- Using SP Batch system
 - Covered in the talk "Running Jobs on the IBM SP"

General IBM SP Hardware

- Power 3 processors
- Hybrid machine
 - N Shared Memory Processor Nodes
 - Each SMP node contains 2 to 8 processors sharing memory
 - Nodes connected together with a high speed network

IBM SP network Architecture

- Bi-directional multi-stage interconnection network (omega-type)
 - Switch adaptor
 - Switch network
 - packet-switched
 - support for use by multiple processes
 - redundant routing paths
 - error detection
- Details of network architecture at: <u>www.chips.ibm.com</u>
- Differences between T3E
 - Message time (more) independent of placement
 - Nodes do not need to be contiguous
 - A little slower

NPACI IBM SP Configuration

- 144 IBM SP-High Nodes
 - 8 shared memory processors/node for 1152 processors
 - 6.4 Gbytes/second on-node memory bandwidth
 - 4 Gbytes/node memory
- Power3+ processors
 - 375 MHz
 - Up to 4 floating point operations per cycle
 - 1500 MFLOPS/processor (peak) for a total of ~1.73 Teraflops(peak)
 - 64KB L1 cache
 - 4 MB L2 cache
 - 2-way set associative
- Nodes connected together with IBM switch
 - 115 MB/second bi-directional
 - Maximum 4 MPI tasks/node when using switch (<u>U</u>ser <u>S</u>pace)
 - Maximum 8 MPI tasks/node when using IP (for applications with low communication requirements)

NAVO IBM SP Configuration

- 334 IBM SP-High Nodes
 - 4 shared memory processors/node for total 1336 processors
 - 36 GB/node
 - 1.6 Gbytes/second into L2 cache at 100 MHz bus speed
- Power3 II processors
 - 375 MHz
 - Up to 4 floating point operations per cycle
 - 1.5 GFLOPS/processor for a total of 2.0 Teraflops (peak)
 - 64KB L1 cache
 - 4 MB L2 cache
 - Two-way set associative
- Nodes connected together with IBM switch
 - 300 MB/second peak, bi-directional

POWER3 Architecture

Details of POWER3 architecture at:

www.chips.ibm.com/micronews/vol4_no4/powerpc.html

Cache structure T3E to SP

- Single-CPU optimizations different cache architecture provides new optimization opportunities.
- Cray T3E
 - 8 KB Level 1 cache
 - 96 KB Level 2 cache
- IBM
 - 64KB Level 1 cache (128-way set associative)
 - 4 MB Level 2 cache (2-way set-associative)

Stick to standards to help portability

- Don't rely on particular data sizes
 - Normal real data size may be 4 or 8 bytes
 - Double precision varies
 - Use 'sequence" in Fortran derived types
 - MPI type sizes may change on different machines
- Watch out for large MPI tags
- Extensions to avoid
 - Cray Pointers
 - Non-Fortran 90 Namelist
 - Real*4 data types

Fortran Data Storage Models

Default Fortran Data Types

Data Type	T3E Length (Bytes)	SP length (Bytes)	
Character	1	1	
Complex	2*8	2*4	
Double Complex	2*8	2*8	
Double Precision	8	8	
Integer/Logical	8	4	
Real	8	4	

Cray T3E treats all real and integer variables as 8 byte quantities

For IBM you can force 8 and 8 byte reals
-qintsize=8 and -qrealsize=8 for similar data types
Reference - www.npaci.edu/BlueHorizon/porting.html

Moving MPI Applications to IBM SP

- Porting existing MPI Applications should be easy:
 - Recompile/relinked with IBM MPI-aware compilers/linkers
 - Replace other numerical library references with IBM equivalent
- Discuss reality:
 - Not too bad
 - Some data sizes are different
 - Different subset of MPI/IO
 - Buffer sizes are different
 - POE is used to run jobs

IBM MPI Features

- Standard MPI IBM PSSP 2.4 Supports MPI 1.2 and parts of MPI-2 (mostly parallel I/O).
- 32-bit <u>only</u> 64-bit version late in 2000?
- Best performance with message size > 1 Kbyte aggregate smaller messages when possible
- Less "forgiving" than T3E implementation of bad or missing arguments
- Supports both User Space (US) network protocol and Internet protocol (IP) set with MP_EUILIB environment variable
- Can use shared-memory architecture for passing messages set with MPI_SHARED_MEMORY environment variable

Moving MPI Applications - Summary

- Re-compile source code with IBM "MPI-aware" compilers. Use POWER3 optimizations (-O3 -qarch=pwr3 -qtune=pwr3 -qstrict)
- Use IBM MASS library for common math functions trig, log, exp, etc.
- Use IBM Numerical libraries ESSL/PESSL where possible
- Check for program correctness
 - IBM may produce different results than other vendor's machines
 - May have to modify source depending on data types used
- Tune program for IBM MPI
 - Message delivery implementation(s) eager, rendezvous
 - Interdelay
 - Adjust buffer sizes

IBM MPI Environment Variables

- POE controls execution environment for MPI important to have "correct" parameters and values for optimum performance
- There are <u>many</u> variables check IBM poe manual for detailed information however, some new ones not yet documented
 - MP_EUILIB=us [use high-speed network, User Space]
 - MP_SHARED_MEMORY=yes [have MPI use shared memory to streamline inter-task communication between processors within a node]
 - MP_INTRDELAY mystery parameter set to 100
 - MP_EAGER_LIMIT Changes the threshold value for message size, above which rendezvous protocol is used
 - MP_BUFFER_MEM Changes the maximum size of memory used by the communication subsystem to buffer early arrivals
 - MP_LABELIO Label IO with PID

Compilers

- mpXXX "mp" denotes IBM's MPI aware compiler shells
- mpcc [options] your_source.c (C)
 - "mpcc" is shell script IBM MPI libraries linked automatically
- mpCC [options] your_source.C (C++)
- mpxlf [options] your_source.f (Fortran 77, only suffixes .f, .F)
- mpxlf90/95 [options] your_source.f (Fortran 90/95)
- Must use thread-safe compilers with MPI I/O mpxlf90_r, mpcc_r, mpCC_r

Compiling

- Suggested Fortran compiler flags
 - "-O3" performs high-level optimizations
 - "-qstrict" used with -O3 to ensure compiler optimization does not alter program semantics
 - "-qarch=pwr3" produces an object that contains instructions that run on the POWER3 hardware platforms
 - "-qtune=pwr3" produces an object optimized for the POWER3 hardware platforms
 - "-bmaxdata:bytes" specifies max size reserved for program data segment "heap" (default is 128 MB)
 - "-bmaxstack:bytes" specifies max program stack size (default - 32 KB)

Compiling at NAVO

To compile codes using F90/F95 compilers on HABU, users must:

- Move their code to local (non-GPFS) /scratch filesystem on either of the two interactive nodes
- Or, if compiling with LoadLeveler in a batch run, move to the /scratch filesystem on one of the compute nodes.
- Once the compilation is complete remove any files from the /scratch directory ASAP
- Only required for F90/F95 code and is due to lack of functionality in current version of GPFS.

Numerical Libraries

Use MASS for common mathematical functions - trig, exp, log, etc.

MASS - mpxlf95 -O3 -qtune=pwr3 -qarch=pwr3 your_source.f -lmass

Use ESSL/PESSL for Linear Algebra, LAPACK, EISPACK, etc. PESSL is MPI-based, runs in parallel. ESSL is single CPU and/or SMP-based.

- Common numerical functionality included Linear Algebra,
 FFTs, Integration, Random number generation
- Most of LAPACK, ScaLAPACK included in ESSL/PESSL/BLAS mpxlf95 -O3 -qtune=pwr3 -qarch=pwr3 your_source.f -lblas -lessl lpessl
- Convert SciLib calls to ESSL/PESSL equivalents

Porting Applications - References

References

- IBM RS/6000 SP References
 www.rs6000.ibm.com/resource/aix_resource/sp_books
- Single CPU optimization information specific to the IBM architecture "Scientific Applications in RS/6000 SP Environments" (www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245611.pdf)
- IBM RS/6000 Practical MPI Programming

NPACI IBM SP Blue Horizon Hardware Overview

- Machine name is horizon.npaci.edu
- Machine is
 - 144 nodes connected together with IBM High Speed switch
- Node is
 - 8 shared memory processors with a total of 4Gbytes/node
- Processor is
 - 375 MHz Power3
- Network is omega-type multi-stage
- A hybrid distributed/shared memory machine
 - Use MP (MPI or LAPI) for distributed memory nature
 - Use OpenMP/Pthreads for shared memory nature
 - Use Hybrid Method (MP + Threads) to exploit hybrid system architecture
- Disk
 - Local \$HOME directory for each user backed up
 - /work directory shared among users not backed up
 - GPFS available, supports MPI-I/O
 - Total 5.1 TB

Available Fortran Data Storage Types

Data Type	Sub Type	T3 E	SP
		Length(Bytes)	Length(Bytes)
Complex	4	2 * 4	2 * 4
	8	2 * 8	2 * 8
	16	NA	2 * 16
Integer/Logical	1	1	4
	2	2	4
	4	4	4
	8	8	8
Real	4	4	4
	8	8	8
	16	NA	16

